Sistem Penamaan Domain ;
SNR (
bahasa Inggris: (
Domain Name System;
DNS) adalah sebuah sistem yang menyimpan informasi tentang
nama host ataupun
nama domain dalam bentuk
basis data tersebar (
distributed database) di dalam jaringan komputer, misalkan:
Internet. DNS menyediakan
alamat IP untuk setiap nama host dan mendata setiap
server transmisi surat (
mail exchange server) yang menerima surel (
email) untuk setiap domain. Menurut browser
Google Chrome,
DNS adalah layanan jaringan yang menerjemahkan nama situs web menjadi alamat internet.
DNS menyediakan pelayanan yang cukup penting untuk
Internet, ketika perangkat keras komputer dan jaringan bekerja dengan
alamat IP untuk mengerjakan tugas seperti pengalamatan dan penjaluran (
routing),
manusia pada umumnya lebih memilih untuk menggunakan nama host dan nama
domain, contohnya adalah penunjukan sumber universal (
URL)
dan alamat surel. Analogi yang umum digunakan untuk menjelaskan
fungsinya adalah DNS bisa dianggap seperti buku telepon internet dimana
saat pengguna mengetikkan www.indosat.net.id di peramban web maka
pengguna akan diarahkan ke alamat IP 124.81.92.144 (IPv4) dan
2001:e00:d:10:3:140::83 (IPv6).
Sejarah singkat DNS
Penggunaan nama sebagai pengabstraksi alamat mesin di sebuah jaringan komputer yang lebih dikenal oleh manusia mengalahkan
TCP/IP, dan kembali ke zaman
ARPAnet. Dahulu, seluruh komputer di jaringan komputer menggunakan file
HOSTS.TXT dari SRI (sekarang
SIR International),
yang memetakan sebuah alamat ke sebuah nama (secara teknis, file ini
masih ada - sebagian besar sistem operasi modern menggunakannya dengan
baik secara baku maupun melalui cara konfigurasi, dapat melihat
Hosts file untuk menyamakan sebuah
nama host menjadi sebuah
alamat IP
sebelum melakukan pencarian via DNS). Namun, sistem tersebut di atas
mewarisi beberapa keterbatasan yang mencolok dari sisi prasyarat, setiap
saat sebuah alamat komputer berubah, setiap sistem yang hendak
berhubungan dengan komputer tersebut harus melakukan update terhadap
file Hosts.
Dengan berkembangnya jaringan komputer, membutuhkan sistem yang bisa
dikembangkan: sebuah sistem yang bisa mengganti alamat host hanya di
satu tempat, host lain akan mempelajari perubaha tersebut secara
dinamis. Inilah DNS.
Paul Mockapetris menemukan DNS di tahun
1983; spesifikasi asli muncul di
RFC 882 dan 883. Tahun
1987, penerbitan
RFC 1034 dan
RFC 1035 membuat update terhadap spesifikasi DNS. Hal ini membuat
RFC 882 dan
RFC 883 tidak berlaku lagi. Beberapa RFC terkini telah memproposikan beberapa tambahan dari protokol inti DNS.
Teori bekerja DNS
Para Pemain Inti
Pengelola dari sistem DNS terdiri dari tiga komponen:
- DNS resolver, sebuah program klien yang berjalan di komputer pengguna, yang membuat permintaan DNS dari program aplikasi.
- recursive DNS server, yang melakukan pencarian melalui DNS sebagai tanggapan permintaan dari resolver, dan mengembalikan jawaban kepada para resolver tersebut;
dan ...
- authoritative DNS server yang memberikan jawaban terhadap permintaan dari recursor, baik dalam bentuk sebuah jawaban, maupun dalam bentuk delegasi (misalkan: mereferensikan ke authoritative DNS server lainnya)
Pengertian beberapa bagian dari nama domain
Sebuah nama domain biasanya terdiri dari dua bagian atau lebih (secara teknis disebut label), dipisahkan dengan titik.
- Label paling kanan menyatakan top-level domain - domain tingkat atas/tinggi (misalkan, alamat www.wikipedia.org memiliki top-level domain org).
- Setiap label di sebelah kirinya menyatakan sebuah sub-divisi atau subdomain dari domain yang lebih tinggi. Catatan: "subdomain" menyatakan ketergantungan relatif, bukan absolut. Contoh: wikipedia.org merupakan subdomain dari domain org, dan id.wikipedia.org dapat membentuk subdomain dari domain wikipedia.org (pada praktiknya, id.wikipedia.org
sesungguhnya mewakili sebuah nama host - lihat dibawah). Secara teori,
pembagian seperti ini dapat mencapai kedalaman 127 level, dan setiap
label dapat terbentuk sampai dengan 63 karakter, selama total nama
domain tidak melebihi panjang 255 karakter. Tetapi secara praktik,
beberapa pendaftar nama domain (domain name registry) memiliki batas yang lebih sedikit.
- Terakhir, bagian paling kiri dari bagian nama domain (biasanya)
menyatakan nama host. Sisa dari nama domain menyatakan cara untuk
membangun jalur logis untuk informasi yang dibutuhkan; nama host adalah
tujuan sebenarnya dari nama sistem yang dicari alamat IP-nya. Contoh:
nama domain www.wikipedia.org memiliki nama host "www".
DNS memiliki kumpulan hierarki dari
DNS servers. Setiap domain atau subdomain memiliki satu atau lebih
authoritative DNS Servers
(server DNS otorisatif) yang mempublikasikan informasi tentang domain
tersebut dan nama-nama server dari setiap domain di-"bawah"-nya. Pada
puncak hirarki, terdapat
root servers- induk server nama: server yang ditanyakan ketika mencari (
menyelesaikan/
resolving) dari sebuah nama domain tertinggi (
top-level domain).
Sebuah contoh dari teori rekursif DNS
Sebuah contoh mungkin dapat memperjelas proses ini. Andaikan ada aplikasi yang memerlukan pencarian alamat IP dari
www.wikipedia.org. Aplikasi tersebut bertanya ke
DNS recursor lokal.
- Sebelum dimulai, recursor harus mengetahui dimana dapat menemukan root nameserver; administrator dari recursive DNS server secara manual mengatur (dan melakukan update secara berkala) sebuah file dengan nama root hints zone (panduan akar DNS) yang menyatakan alamat-alamt IP dari para server tersebut.
- Proses dimulai oleh recursor yang bertanya kepada para root server tersebut - misalkan: server dengan alamat IP "198.41.0.4" - pertanyaan "apakah alamat IP dari www.wikipedia.org?"
- Root server menjawab dengan sebuah delegasi, arti kasarnya: "Saya tidak tahu alamat IP dari www.wikipedia.org, tapi saya "tahu" bahwa server DNS di 204.74.112.1 memiliki informasi tentang domain org."
- Recursor DNS lokal kemudian bertanya kepada server DNS (yaitu: 204.74.112.1) pertanyaan yang sama seperti yang diberikan kepada root server. "apa alamat IP dari www.wikipedia.org?". (umumnya) akan didapatkan jawaban yang sejenis, "saya tidak tahu alamat dari www.wikipedia.org, tapi saya "tahu" bahwa server 207.142.131.234 memiliki informasi dari domain wikipedia.org."
- Akhirnya, pertanyaan beralih kepada server DNS ketiga (207.142.131.234), yang menjawab dengan alamat IP yang dibutuhkan.
Proses ini menggunakan
pencarian rekursif (
recursion / recursive searching).
Pengertian pendaftaran domain dan glue records
Membaca contoh di atas, Anda mungkin bertanya: "bagaimana caranya DNS
server 204.74.112.1 tahu alamat IP mana yang diberikan untuk domain
wikipedia.org?" Pada awal proses, kita mencatat bahwa sebuah
DNS recursor memiliki alamat IP dari para
root server yang (kurang-lebih) didata secara explisit (
hard coded). Mirip dengan hal tersebut, server nama (
name server) yang otoritatif untuk
top-level domain mengalami perubahan yang jarang.
Namun, server nama yang memberikan jawaban otorisatif bagi nama
domain yang umum mengalami perubahan yang cukup sering. Sebagai bagian
dari proses pendaftaran sebuah nama domain (dan beberapa waktu
sesudahnya), pendaftar memberikan pendaftaran dengan server nama yang
akan mengotorisasikan nama domain tersebut; maka ketika mendaftar
wikipedia.org, domain tersebut terhubung dengan server nama
gunther.bomis.com dan
zwinger.wikipedia.org
di pendaftar .org. Kemudian, dari contoh di atas, ketika server
dikenali sebagai 204.74.112.1 menerima sebuah permintaan, DNS server
memindai daftar domain yang ada, mencari
wikipedia.org, dan mengembalikan server nama yang terhubung dengan domain tersebut.
Biasanya, server nama muncul berdasarkan urutan nama, selain berdasarkan alamat IP. Hal ini menimbulkan
string
lain dari permintaan DNS untuk menyelesaikan nama dari server nama;
ketika sebuah alamat IP dari server nama mendapatkan sebuah pendaftaran
di zona induk, para programmer jaringan komputer menamakannya sebuah
glue record.
DNS dalam praktik
Ketika sebuah aplikasi (misalkan web broswer), hendak mencari alamat
IP dari sebuah nama domain, aplikasi tersebut tidak harus mengikuti
seluruh langkah yang disebutkan dalam
teori di atas. Kita akan melihat dulu konsep
caching, lalu mengartikan operasi DNS di "dunia nyata".
Caching dan masa hidup (caching and time to live)
Karena jumlah permintaan yang besar dari sistem seperti DNS,
perancang DNS menginginkan penyediaan mekanisme yang bisa mengurangi
beban dari masing-masing server DNS. Rencana mekanisnya menyarankan
bahwa ketika sebuah
DNS resolver (klien) menerima sebuah jawaban DNS, informasi tersebut akan di
cache
untuk jangka waktu tertentu. Sebuah nilai (yang di-set oleh
administrator dari server DNS yang memberikan jawaban) menyebutnya
sebagai
time to live (masa hidup), atau
TTL yang mendefinisikan periode tersebut. Saat jawaban masuk ke dalam
cache,
resolver akan mengacu kepada jawaban yang disimpan di
cache tersebut; hanya ketika TTL usai (atau saat administrator mengosongkan jawaban dari memori
resolver secara manual) maka
resolver menghubungi server DNS untuk informasi yang sama.
Waktu propagasi (propagation time)
Satu akibat penting dari arsitektur tersebar dan
cache adalah
perubahan kepada suatu DNS terkadang efektif secara langsung dalam skala
besar/global. Contoh berikut mungkin akan menjelaskannya: Jika seorang
administrator telah mengatur
TTL selama 6 jam untuk host
www.wikipedia.org, kemudian mengganti alamat IP dari
www.wikipedia.org pada pk 12:01, administrator harus mempertimbangkan bahwa ada (paling tidak) satu individu yang menyimpan
cache
jawaban dengan nilai lama pada pk 12:00 yang tidak akan menghubungi
server DNS sampai dengan pk 18:00. Periode antara pk 12:00 dan pk 18:00
dalam contoh ini disebut sebagai
waktu propagasi (
propagation time),
yang bisa didefiniskan sebagai periode waktu yang berawal antara saat
terjadi perubahan dari data DNS, dan berakhir sesudah waktu maksimum
yang telah ditentukan oleh
TTL berlalu. Ini akan mengarahkan kepada pertimbangan logis yang penting ketika membuat perubahan kepada DNS:
tidak semua akan melihat hal yang sama seperti yang Anda lihat.
RFC1537 dapat membantu penjelasan ini.
DNS di dunia nyata
Di dunia nyata, user tidak berhadapan langsung dengan
DNS resolver - mereka berhadapan dengan program seperti
web brower (
Mozilla Firefox,
Safari,
Opera,
Internet Explorer,
Netscape,
Konqueror dan lain-lain dan klien mail (
Outlook Express,
Mozilla Thunderbird
dan lain-lain). Ketika user melakukan aktivitas yang meminta pencarian
DNS (umumnya, nyaris semua aktivitas yang menggunakan Internet), program
tersebut mengirimkan permintaan ke
DNS Resolver yang ada di dalam
sistem operasi.
DNS resolver akan selalu memiliki
cache (lihat di atas) yang memiliki isi pencarian terakhir. Jika
cache dapat memberikan jawaban kepada permintaan DNS,
resolver akan menggunakan nilai yang ada di dalam
cache kepada program yang memerlukan. Kalau
cache tidak memiliki jawabannya,
resolver akan mengirimkan permintaan ke server DNS tertentu. Untuk kebanyakan pengguna di rumah,
Internet Service Provider(ISP)
yang menghubungkan komputer tersebut biasanya akan menyediakan server
DNS: pengguna tersebut akan mendata alamat server secara manual atau
menggunakan
DHCP
untuk melakukan pendataan tersebut. Namun jika administrator sistem /
pengguna telah mengkonfigurasi sistem untuk menggunakan server DNS
selain yang diberikan secara default oleh ISP misalnya seperti
Google Public DNS ataupun
OpenDNS[1], maka
DNS resolver akan mengacu ke DNS server yang sudah ditentukan. Server nama ini akan mengikuti proses yang disebutkan di
Teori DNS, baik mereka menemukan jawabannya maupun tidak. Hasil pencarian akan diberikan kepada
DNS resolver; diasumsikan telah ditemukan jawaban,
resolver akan menyimpan hasilnya di
cache untuk penggunaan berikutnya, dan memberikan hasilnya kepada software yang meminta pencarian DNS tersebut.
Sebagai bagian akhir dari kerumitan ini, beberapa aplikasi seperti
web browser juga memiliki DNS
cache mereka sendiri, tujuannya adalah untuk mengurangi penggunaan referensi
DNS resolver, yang akan meningkatkan kesulitan untuk melakukan
debug DNS, yang menimbulkan kerancuan data yang lebih akurat.
Cache seperti ini umumnya memiliki masa yang singkat dalam hitungan 1 menit.
Penerapan DNS lainnya
Sistem yang dijabarkan di atas memberikan skenario yang disederhanakan. DNS meliputi beberapa fungsi lainnya:
- Nama host dan alamat IP tidak berarti terhubung secara
satu-banding-satu. Banyak nama host yang diwakili melalui alamat IP
tunggal: gabungan dengan pengasuhan maya (virtual hosting),
hal ini memungkinkan satu komputer untuk malayani beberapa situs web.
Selain itu, sebuah nama host dapat mewakili beberapa alamat IP: ini akan
membantu toleransi kesalahan (fault tolerance dan penyebaran beban (load distribution), juga membantu suatu situs berpindah dari satu lokasi fisik ke lokasi fisik lainnya secara mudah.
- Ada cukup banyak kegunaan DNS selain menerjemahkan nama ke alamat IP. Contoh:, agen pemindahan surat Mail transfer agents(MTA) menggunakan DNS untuk mencari tujuan pengiriman E-mail untuk alamat tertentu. Domain yang menginformasikan pemetaan exchange disediakan melalui rekod MX (MX record)
yang meningkatkan lapisan tambahan untuk toleransi kesalahan dan
penyebaran beban selain dari fungsi pemetaan nama ke alamat IP.
- Kerangka Peraturan Pengiriman (Sender Policy Framework) secara kontroversi menggunakan keuntungan jenis rekod DNS, dikenal sebagai rekod TXT.
- Menyediakan keluwesan untuk kegagalan komputer, beberapa server DNS
memberikan perlindungan untuk setiap domain. Tepatnya, tigabelas server
akar (root servers) digunakan oleh seluruh dunia. Program DNS
maupun sistem operasi memiliki alamat IP dari seluruh server ini.
Amerika Serikat memiliki, secara angka, semua kecuali tiga dari server
akar tersebut. Namun, dikarenakan banyak server akar menerapkan anycast, yang memungkinkan beberapa komputer yang berbeda dapat berbagi alamat IP yang sama untuk mengirimkan satu jenis services melalui area geografis yang luas, banyak server yang secara fisik (bukan sekedar angka) terletak di luar Amerika Serikat.
DNS menggunakan
TCP dan
UDP di
port komputer
53 untuk melayani permintaan DNS. Nyaris semua permintaan DNS berisi
permintaan UDP tunggal dari klien yang dikuti oleh jawaban UDP tunggal
dari server. Umumnya TCP ikut terlibat hanya ketika ukuran data jawaban
melebihi 512 byte, atau untuk pertukaaran zona DNS
zone transfer
Jenis-jenis catatan DNS
Beberapa kelompok penting dari data yang disimpan di dalam DNS adalah sebagai berikut:
- A record atau catatan alamat memetakan sebuah nama host ke alamat IP 32-bit (untuk IPv4).
- AAAA record atau catatan alamat IPv6 memetakan sebuah nama host ke alamat IP 128-bit (untuk IPv6).
- CNAME record atau catatan nama kanonik membuat alias untuk nama domain. Domain yang di-alias-kan memiliki seluruh subdomain dan rekod DNS seperti aslinya.
- [MX record]]' atau catatan pertukaran surat memetakan sebuah nama domain ke dalam daftar mail exchange server untuk domain tersebut.
- PTR record atau catatan penunjuk memetakan sebuah nama host ke nama kanonik untuk host tersebut. Pembuatan rekod PTR untuk sebuah nama host di dalam domain in-addr.arpa yang mewakili sebuah alamat IP menerapkan pencarian balik DNS (reverse DNS lookup) untuk alamat tersebut. Contohnya (saat penulisan / penerjemahan artikel ini), www.icann.net memiliki alamat IP 192.0.34.164, tetapi sebuah rekod PTR memetakan ,,164.34.0.192.in-addr.arpa ke nama kanoniknya: referrals.icann.org.
- NS record atau catatan server nama memetakan sebuah nama domain ke dalam satu daftar dari server DNS untuk domain tersebut. Pewakilan bergantung kepada rekod NS.
- SOA record atau catatan otoritas awal (Start of Authority) mengacu server DNS yang mengediakan otorisasi informasi tentang sebuah domain Internet.
- SRV record adalah catatan lokasi secara umum.
- Catatan TXT mengijinkan administrator untuk memasukan data acak ke dalam catatan DNS; catatan ini juga digunakan di spesifikasi Sender Policy Framework.
Jenis catatan lainnya semata-mata untuk penyediaan informasi (contohnya, catatan
LOC memberikan letak
lokasi fisik dari sebuah host, atau data ujicoba (misalkan, catatan
WKS memberikan sebuah daftar dari server yang memberikan servis yang dikenal (
well-known service) seperti HTTP atau POP3 untuk sebuah domain.
Nama domain yang diinternasionalkan
Nama domain harus menggunakan satu sub-kumpulan dari karakter
ASCII, hal ini mencegah beberapa bahasa untuk menggunakan nama maupun kata lokal mereka.
ICANN telah menyetujui
Punycode yang berbasiskan sistem
IDNA, yang memetakan string
Unicode ke karakter set yang valid untuk DNS, sebagai bentuk penyelesaian untuk masalah ini, dan beberapa
registries sudah mengadopsi metode IDNS ini.
Perangkat lunak DNS
Beberapa jenis
perangkat lunak yang menerapkan metode DNS, di antaranya:
Utiliti berorientasi DNS termasuk:
- dig (domain information groper)
Pengguna legal dari domain
Pendaftar (registrant)
Tidak satupun individu di dunia yang "memiliki" nama domain kecuali
Network Information Centre (NIC), atau pendaftar nama domain (
domain name registry).
Sebagian besar dari NIC di dunia menerima biaya tahunan dari para
pengguna legal dengan tujuan bagi si pengguna legal menggunakan nama
domain tersebut. Jadi sejenis perjanjian sewa-menyewa terjadi,
bergantung kepada syarat dan ketentuan pendaftar. Bergantung kepada
beberpa peraturan penamaan dari para pendaftar, pengguna legal dikenal
sebagai "pendaftar" (
registrants) atau sebagai "pemegang domain" (
domain holders)
ICANN memegang daftar lengkap untuk pendaftar domain di seluruh
dunia. Siapapun dapat menemukan pengguna legal dari sebuah domain dengan
mencari melalui basis data
WHOIS yang disimpan oleh beberpa pendaftar domain.
Di (lebih kurang) 240
country code top-level domains (ccTLDs), pendaftar domain memegang sebuah acuan WHOIS (pendaftar dan nama server). Contohnya,
IDNIC, NIC Indonesia, memegang informasi otorisatif WHOIS untuk nama domain .ID.
Namun, beberapa pendaftar domain, seperti
VeriSign,
menggunakan model pendaftar-pengguna. Untuk nama domain .COM dan .NET,
pendaftar domain, VeriSign memegang informasi dasar WHOIS )pemegang
domain dan server nama). Siapapun dapat mencari detail
WHOIS (Pemegang domain, server nama, tanggal berlaku, dan lain sebagainya) melalui pendaftar.
Sejak sekitar 2001, kebanyakan pendaftar
gTLD (.ORG, .BIZ, .INFO) telah mengadopsi metode pendaftar "tebal", menyimpan otoritatif
WHOIS di beberapa pendaftar dan bukan pendaftar itu saja.
Kontak Administratif (Administrative Contact)
Satu pemegang domain biasanya menunjuk kontak administratif untuk
menangani nama domain. Fungsi manajemen didelegasikan ke kontak
administratif yang mencakup (diantaranya):
- keharusan untuk mengikuti syarat dari pendaftar domain dengan tujuan memiliki hak untuk menggunakan nama domain
- otorisasi untuk melakukan pemutakhiran ke alamat fisik, alamat surel dan nomor telepon dan lain sebagainya via WHOIS
Kontak Teknis (Technical Contact)
Satu kontak teknis menangani server nama dari sebuah nama domain. Beberapa dari banyak fungsi kontak teknis termasuk:
- memastikan bahwa konfigurasi dari nama domain mengikuti syarat dari pendaftar domain
- pemutakhiran zona domain
- menyediakan fungsi 24x7 untuk ke server nama (yang membuat nama domain bisa diakses)
Kontak Pembayaran (Billing Contact)
Tidak perlu dijelaskan, pihak ini adalah yang menerima tagihan dari
NIC.
Server Nama (Name Servers)
Disebut sebagai server nama otoritatif yang mengasuh zona nama domain dari sebuah nama domain.
Politik
Banyak penyelidikan telah menyuarakan kritik dari metode yang
digunakan sekarang untuk mengatur kepemilikan domain. Umumnya, kritik
mengklaim penyalahgunaan dengan monopoli, seperti
VeriSign Inc dan masalah-masalah dengan penunjukkan dari
top-level domain (TLD). Lembaga international
ICANN (
Internet Corporation for Assigned Names and Numbers) memelihara industri nama domain.
sumber : http://id.wikipedia.org/wiki/DNS
0 komentar: